Continuous-Time Modelling with Spatial Dependence
نویسندگان
چکیده
منابع مشابه
Continuous-Time Modelling with Spatial Dependence
(Spatial) panel data are routinely modelled in discrete time (DT). However, there are compelling arguments for continuous time (CT) modelling of (spatial) panel data. Particularly, most social processes evolve in CT, so that statistical analysis in DT is an oversimplification, gives an incomplete representation of reality and may lead to misinterpretation of estimation results. The most compell...
متن کاملModelling Spatial Dependence with Pairwise Correlations
An understanding of the spatial dimension of economic and social activity requires methods that can separate out the relationship between spatial units that is due to the effect of common factors from that which is purely spatial even in an abstract sense. The same applies to the empirical analysis of networks in general. We are able to distinguish between cross-sectional strong dependence and ...
متن کاملMaps of Continuous Spatial Dependence
Heterogeneity is one of the distinguishing features in spatial econometric models. It is a frequent problem in applied work and can be very damaging for statistical inference. In this paper, we focus on the problems implied by the existence of instabilities in the mechanism of spatial dependence in a spatial lag model, assuming that the other terms of the specification remain stable. We begin t...
متن کاملspMC: Modelling Spatial Random Fields with Continuous Lag Markov Chains
Abstract Currently, a part of the R statistical software is developed in order to deal with spatial models. More specifically, some available packages allow the user to analyse categorical spatial random patterns. However, only the spMC package considers a viewpoint based on transition probabilities between locations. Through the use of this package it is possible to analyse the spatial variabi...
متن کاملBayesian Time Series Modelling and Prediction with Long-Range Dependence
We present a class of models for trend plus stationary component time series, in which the spectral densities of stationary components are represented via non-parametric smoothness priors combined with long-range dependence components. We discuss model tting and computational issues underlying Bayesian inference under such models, and provide illustration in studies of a climatological time ser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2011
ISSN: 1556-5068
DOI: 10.2139/ssrn.1908147